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Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches

• Dictionary-based methods

• Training classifiers on human coded or naturally annotated

data

• Semantic similarity measures (eg. using fasttext, but also

cosine similarity etc.)

Unsupervised Approaches

• LDA & Structural topic models (but watch out for short

texts!)

• Neural networks (including word2vec)
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Illustration: Was there a “Trump effect” on Twitter?
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• Machine-Learning-
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Hateful Sub-Reddits
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Random Sample of
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Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech

and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477

terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of

our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538

terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:

• Term can be part of a Twitter handle: @angrybitch

• Dictionary terms can be parts of other words: spicy

• Dictionary terms can be homonyms: “a chink in his armor”

• Examples of Anti-Hate Speech that include dictionary terms:

• Already been flicked off and called a wetback and it’s only

been 3 days... thanks Donald trump

• RT @ShaunKing: This just happened in Indiana. ”F*** you

n**** bitch. Trump is going to deport you back to Africa.”

Day 1 of Donald
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Supervised Classification (Dictionary-based Method):

• Trained undergraduates and crowd-sourced coders on

Crowdflower coded a random sample of 25,000 tweets (each

tweet coded by 3 people) containing hate speech OR white

nationalist rhetoric terms identified using our dictionary

method.

• Does this tweet contain hate speech? (yes or no)

• Does this tweet contain white nationalist rhetoric? (yes or no)

• Instructions contained detailed definitions and examples.

• Test questions were used to weed out ineffective coders.
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Method II: Bag of Communities Approach

• Concern: are we missing other kinds of hate speech?

• Idea: Find a place with known hate speech, then compare

daily tweets with that speech

• Concept: Measure the average predicted probability that

tweets are classified as belonging to a corpus of real-world

hate speech.

17 / 31



Method II: Bag of Communities Approach

• Concern: are we missing other kinds of hate speech?

• Idea: Find a place with known hate speech, then compare

daily tweets with that speech

• Concept: Measure the average predicted probability that

tweets are classified as belonging to a corpus of real-world

hate speech.

17 / 31



Method II: Bag of Communities Approach

• Concern: are we missing other kinds of hate speech?

• Idea: Find a place with known hate speech, then compare

daily tweets with that speech

• Concept: Measure the average predicted probability that

tweets are classified as belonging to a corpus of real-world

hate speech.

17 / 31



Method II: Bag of Communities Approach

• 1) Download Reddit comments, remove comments with

negative scores, and preprocess data.

• 2) Train supervised classifier (Fasttext) to predict which

subreddit each comment was posted in.

• 3) Use subreddit embeddings from Step 2 to categorize

subreddits into groups.

• 4) Train supervised classifier (Fasttext) to predict which group

of subreddits each comment was posted in.

• 5) Apply trained classifier from Step 4 on Twitter data.

• 6) Calculate daily average predicted probability that tweets

are classified as belonging to a group of alt-right subreddits.
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Validation of Method II: Hierarchical Clustering

Figure 1: Validity Check: Hierarchical Clustering of Subreddits
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Dictionary vs. Subreddit Analysis
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So what does this tell us about analyzing social media data?

• Social media data...

• are really big!

• are optimized for search

• Need for more systematic approaches to measuring online

behavior

• Multiple methods & data sources & iterative validation

increase our confidence that we’re measuring what we think

we are

• Even better, combine offline and online measures!
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Some Takeaways

• Social media data opens up new measurement opportunities

for social scientists.

• But key challenges remain:

• Representativeness

• Reproducability

• Temporal Validity

• Researchers are at the mercy of the platforms

• Like any data source there are pros and cons and approaches

are constantly evolving...
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Thank You!
alexandra.siegel@colorado.edu

@aasiegel

alexandra-siegel.com
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