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Why use social media data to study politics?

e Real-time, scalable,
measures of political
behavior

o Elites, everyday citizens,
extremists, media etc. on
same platform

e Access to politically

sensitive content and hard
to reach populations
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e Available Metadata

e Static vs. Ongoing
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Twitter: Social Scientists’ Favorite

Twitter APls

Rate limit

* REST API
Allows developers 1o
s, (35) 19min
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Allows developersto -

‘access Twitter search min.
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Allows developers 1o

real-time access e 1seg

Twitter public statuses

{ "created_at": "Wed Nov 07 04:16:18 +0000 2012",
"id": 266031293945503744,
"text": "Four more years. http://t.co/bAJE6Vom",

"source": "web",

Tweets from the President are signed -bo.",
"url": "http://t.co/8alb6Jcemr",
"protected": false,

"followers_count": 54873124,
“friends_count": 654580,

"listed_count":
"created _at" "Mon Mar 05 22:08:26 +0000 2007",
"time_zone": "Eastern Time (US & Canada)",
"gtatuses_count": 10687,

"ang": "en’ ¥,

"coordinates": mull,

‘retweet _count": 756411,

"favorite_count": 288867,

"lang": "en"

1

Platform
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¢ "web",
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"description”: "This account is run by Organizing
Tweets from the President are signed -bo.",
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“friends_count": 654580,

"listed_count": 202495,
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"time_zone": "Eastern Time (US & Canada)",
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e Academic Research API
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traditional APIs
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with Gnip
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e Collecting Public Page Data
HOME  AboutUsv Our Facebook Partnershipv People Blog  FAQ¥ . -
with Crowdtangle

facebook o Accessing Data through
SEHERIEIAG Social Science One
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Facebook: Challenges and Opportunities for Research

SOCIAL SCIENCE UNE

Building Industry-Academic Partne

e Collecting Public Page Data
with Crowdtangle

HOME  AboutUs¥ Our Facebook Partnershipv People  Blog  FAQ

fClCEbOOk e Accessing Data through
SEHERIEIAG Social Science One

&
f e Using Facebook Ads for
Academic Research

leype by post_id post_link post_message picture full_picture link
link_domain post_published post_published_unix post_published_sgl
likes_count_fb comments_count_fb reactions_count_fb shares_count_fb
engagement_fh comments_retrieved comments_hase comments_replies
comment_likes_count rea_LOVE rea_WoW rea_HAHA rea_5AD rea_ANGRY

rea_THANKFUL
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Youtube: An Underutilized Resource

"youtube#caption”,

: etag,

"id": string,

“snippet”: {
“videoId": string,
"lastUpdated”: datetime,
“trackKind": string,
“language": string,
“name": string,
“audioTrackType": string,
"isCC": boolean,
“islLarge": boolean,
"isEasyReader”: boolean,
“isDraft": boolean,
"isAutoSynced": boolean,
“status”: string,
“failureReason': string
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Youtube: An Underutilized Resource

o 8

" |I| .
' e Incredibly generous API
{

“kind": "youtube#caption"”, i

e e Channel, Video, Metadata

“snippet”: { . .
"videold"; string, (including comments) & a
"lastUpdated”: datetime,
el S computer generated
“name": string, .
“audioTrackType": string, TRANSCRIPT (l) n any
"isCC": boolean,
“islLarge": boolean,
"isEasyReader”: boolean, |anguage
“isDraft": boolean,
"isAutoSynced": boolean,
"status": string,
“failureReason': string

}

}
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Instagram: There’s politics here too!

) Jecngn,

Default: {urlname}

Options:

{username}: Scraped user

{shortcode}: Post shortcode (profile_pic and story are empty)
{urlname}: Original file name from url.

{mediatype}: The type of media being downloaded.

{datetime}: Date and time of upload. (Format: 20180101 01h@1mols)
{date}: Date of upload. (Format: 20180101)

{year}: Year of upload. (Format: 2018)

{month}: Month of upload. (Format: 01-12)

{day}: Day of upload. (Format: 81-31)

{h}: Hour of upload. (Format: 00-23h)

{m}: Minute of upload. (Format: @@-59m)

{s}: Second of upload. (Format: 80-59s)
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1
@ | Justogoum o
APl e APl is increasingly
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Instagram:

Default: {urlname}
Options:

There’s politics here too!

Lgnstm&m%'

{username}: Scraped user

{shortcode}: Post shortcode (profile_pic and story are empty)

{urlname}: Original file name from url.

{mediatype}: The type of media being downloaded.
{datetime}: Date and time of upload. (Format: 20180101 01h@1mols)
{date}: Date of upload. (Format: 20180101)

{year}: Year of upload. (Format: 2018)

{month}: Month of upload.

(Format: 01-12)

{day}: Day of upload. (Format: 81-31)
{h}: Hour of upload. (Format: 0@-23h)
{m}: Minute of upload. (Format: 00-59m)

{s}: Second of upload.

(Format:

00-595)

e APl is increasingly
restricted

e BUT we can data from
public accounts
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Reddit: Naturally Annotated Political Texts
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Reddit: Naturally Annotated Political Texts

e Easiest to collect with

7259 o Google Big Query
S reddit

e Can query by subreddit,

time, keywords etc.
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TikTok:

)

TikTok
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TikTok:

e TikTok API

e Query by user, hashtags,
trending etc.

TikTok
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What can we do with social media data?

e Text/Image/Video as data

e Network analysis

e Spatial analysis
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Popular Approaches to Text Analysis for Social Media Data
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Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches

e Dictionary-based methods

e Training classifiers on human coded or naturally annotated
data

e Semantic similarity measures (eg. using fasttext, but also

cosine similarity etc.)
Unsupervised Approaches

e LDA & Structural topic models (but watch out for short
texts!)

e Neural networks (including word2vec)

11/31



lllustration: Was there a “Trump effect” on Twitter?

Hate speech seeps into U.S. mainstream
amid bitter campaign

NEW.S DESK

HATE ON THE RISE AFTER TRUMP’S
ELECTION

. By Alexis Okeowo November 17, 2016

Donald Trump and the Escalation of Hate

A number of civil-rights organizations have spoken out about the rise of hate speech and violent threats by
groups and individuals who support the presumptive Republican presidential nominee.

BY KARIN KAMP | JUNE 15,2016

'Massive rise' in hate speech on Twitter during
presidential election

Jessica Guynn , USA TODAY
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How do we measure online hate speech?

e

S reddit

On Twitter

Machine-Learning-
Augmented-Dictionary
Method

Leveraging Data from
Hateful Sub-Reddits

Political Datasets &
Random Sample of
American Twitter Users
(June 2015 - June 2017)
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1. Create dictionaries of slurs and terms from existing dictionaries of hate speech
and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) — (4,477
terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of
our Political Twitter dataset. — (e.g. pizza, newspaper, soak, taco)— (538
terms)
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e Dictionary terms can be parts of other words: spicy
e Dictionary terms can be homonyms: “a chink in his armor”

e Examples of Anti-Hate Speech that include dictionary terms:
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our Political Twitter dataset. — (e.g. pizza, newspaper, soak, taco)— (538
terms)

3. Add common Twitter specific terms using word2vec dictionary — (+ 500 terms)

Problems with Dictionary Methods:
e Term can be part of a Twitter handle: @angrybitch
e Dictionary terms can be parts of other words: spicy
e Dictionary terms can be homonyms: “a chink in his armor”
e Examples of Anti-Hate Speech that include dictionary terms:
e Already been flicked off and called a wetback and it's only
been 3 days... thanks Donald trump

e RT @ShaunKing: This just happened in Indiana. " F*** you
n**** hitch. Trump is going to deport you back to Africa.”
Day 1 of Donald
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Supervised Classification (Dictionary-based Method):

e Trained undergraduates and crowd-sourced coders on
Crowdflower coded a random sample of 25,000 tweets (each
tweet coded by 3 people) containing hate speech OR white
nationalist rhetoric terms identified using our dictionary
method.
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Supervised Classification (Dictionary-based Method):

e Trained undergraduates and crowd-sourced coders on
Crowdflower coded a random sample of 25,000 tweets (each
tweet coded by 3 people) containing hate speech OR white
nationalist rhetoric terms identified using our dictionary
method.

e Does this tweet contain hate speech? (yes or no)
e Does this tweet contain white nationalist rhetoric? (yes or no)
e Instructions contained detailed definitions and examples.

e Test questions were used to weed out ineffective coders.
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Supervised Classification (Dictionary-based Method):

e According to human coders, fewer than half of the tweets
identified by the dictionary method in our random sample
contained hate speech or white nationalist language.

e Trained two Naive Bayes classifiers (a hate speech and a white
nationalist rhetoric classifier).

e We measure the popularity of hate speech and white
nationalist rhetoric (WNR) as:

e The daily proportion of tweets containing hate speech or WNR
in each of our datasets.

e The daily proportion of unique users tweeting hate speech or
WNR in each of our datasets.
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Method II: Bag of Communities Approach

e Concern: are we missing other kinds of hate speech?

17 /31



Method II: Bag of Communities Approach

e Concern: are we missing other kinds of hate speech?

e Idea: Find a place with known hate speech, then compare
daily tweets with that speech

17 /31



Method II: Bag of Communities Approach

e Concern: are we missing other kinds of hate speech?

e Idea: Find a place with known hate speech, then compare
daily tweets with that speech

e Concept: Measure the average predicted probability that
tweets are classified as belonging to a corpus of real-world
hate speech.
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Method II: Bag of Communities Approach

e 1) Download Reddit comments, remove comments with
negative scores, and preprocess data.
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Method II: Bag of Communities Approach

e 1) Download Reddit comments, remove comments with

negative scores, and preprocess data.

e 2) Train supervised classifier (Fasttext) to predict which
subreddit each comment was posted in.

e 3) Use subreddit embeddings from Step 2 to categorize
subreddits into groups.

e 4) Train supervised classifier (Fasttext) to predict which group
of subreddits each comment was posted in.

e 5) Apply trained classifier from Step 4 on Twitter data.

e 6) Calculate daily average predicted probability that tweets

are classified as belonging to a group of alt-right subreddits.
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Validation of Method Il: Hierarchical Clustering

Figure 1: Validity Check: Hierarchical Clustering of Subreddits
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Validation of Method Il: Classifying Twitter Accounts

Accounts classified as Sport:

FC Barcelona & New York Yankees @ FC Zenit in English &

@FCBarcelona @Yankees @fczenit_en
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Validation of Method Il: Classifying Twitter Accounts

Examples of accounts classified as Anti-Trump:

The New York Times @

Nancy Pelosi &

@NancyPelosi

@nytimes

Judd Legum &

@luddLegum

John McCain @ Joshua Tucker
@5SenjohnMcCair @j_a_tucker
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Validation of Method Il: Classifying Twitter Accounts

Accounts classified as Alt-right:

N
(

Richard @ Spencer®  Jared Taylor® National Worldview

@RichardBSpencer @jartaylor @Mathiasian

New

Alfernative
Right

Alternative Right American Renaissance @ RAMZPAUL®

@NewAltRight @AmRenaissance @ramzpaul
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What can we learn from Twitter data?

Monthly Proportion of Classified Tweets Containing Hatespeech
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What can we learn from Twitter data?

Misogynistic Language (Classified Tweets)
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What can we learn from Twitter data?
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What can we learn from Twitter data?

Anti-Muslim Language (Classified Tweets)

Election Day
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What can we learn from Twitter data?

Anti-Semitic Language (Classified Tweets)

Election Day
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Dictionary vs. Subreddit Analysis

Election Day,
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So what does this tell us about analyzing social media data?
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So what does this tell us about analyzing social media data?

Social media data...

e are really big!

e are optimized for search

e Need for more systematic approaches to measuring online
behavior

e Multiple methods & data sources & iterative validation
increase our confidence that we're measuring what we think
we are

e Even better, combine offline and online measures!
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Some Takeaways

e Social media data opens up new measurement opportunities
for social scientists.
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Some Takeaways

e Social media data opens up new measurement opportunities

for social scientists.
e But key challenges remain:

e Representativeness
e Reproducability
e Temporal Validity

e Researchers are at the mercy of the platforms

e Like any data source there are pros and cons and approaches
are constantly evolving...
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Thank You!

alexandra.siegel@colorado.edu
Qaasiegel
alexandra-siegel.com
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